# The TolC protein of *Escherichia coli* K12 is synthesised in a precursor form

### Jim Hackett, Rajeev Misra and Peter Reeves

Department of Microbiology, University of Adelaide, Adelaide, SA 5001, Australia

Received 12 April 1983

We examined the biosynthesis of the TolC protein of *Escherichia coli* Kl2 in a pulse-chase experiment, followed by immunoprecipitation with anti-TolC antibody and SDS-PAGE of the immunoprecipitate. This showed that TolC protein was originally synthesised in a precursor form  $(M_r 54 500)$  which could be chased into the mature form  $(M_r 52 000)$ . DNA sequencing of a portion of the cloned *tolC* gene showed that the N-terminus of the mature rotein was preceded by a typical signal sequence of 22 residues  $(M_r 2542)$ . The initiator Met was preceded by a Shine-Dalgarno sequence, with the correct spacing.

TolC protein Signal sequence E. scherichia coli outer membrane colicin El
DNA sequencing OmpF protein

#### 1. INTRODUCTION

The tolC gene of Escherichia coli K12 is necessary if the major outer membrane proteins OmpC, NmpC and protein 2 are to be present in normal amounts [1]. Strains mutant in the tolC gene show hypersensitivity to various dyes and detergents, and are also tolerant to colicin E1 [2]. The tolC gene has been cloned, and examination of the cloned product both in minicells and intact bacteria showed that the TolC protein was an outer membrane protein of  $M_r$  ~52000 [3,4].

Here, we report that the tolC gene product is synthesised in a form which has app.  $M_r \sim 54500$ , which can be chased into a product of the same  $M_r$  as the mature protein. DNA sequencing of a portion of the cloned tolC gene showed that the N-terminal amino acid of the mature protein (Glu) was not immediately preceded by a codon for a Met residue, but that Met codons occurred 22 and 24 amino acids N-terminal to the N-terminus of the mature protein. We suggest that the 22 residue stretch of amino acids is originally attached to the mature protein, and that it is a signal peptide, being removed proteolytically as or after the protein becomes localised in the bacterial membrane [5].

#### 2. MATERIALS AND METHODS

#### 2.1. Materials

Enzymes active on DNA were from Boehringer. The source of the sequenced DNA was the plasmid pPR42 [3]. Synthetic primer for M13 sequencing was from P-L Biochemicals. L-[ $^{35}$ S]Methionine was from Amersham (Bucks) while [ $\alpha$ - $^{32}$ P]dCTP, for sequencing, was from BRESA (Adelaide, SA).

# 2.2. DNA sequencing

The chain termination method was used [6]. The plasmid pPR42 [3] was cut with PstI, and the 1.1 kilobasepair Pst fragment which includes some of the tolC gene [3] was purified on an agarose gel. This fragment was cut with Sau3A, and the pieces ligated into BamHI-cut replicative form of phage M13mp7 [7]. Recombinant phage DNA was sequenced [7].

#### 2.3. Pulse-chase experiments

The pulse-chase experiments were designed to label short-lived forms of the TolC protein and chase these forms into mature protein. Two strains were used. The strain P2715 was Ab1133 of A.L. Taylor (F<sup>-</sup>, thr-1, leu-6, proA2, lacY1, supE44,

galK2, his-4, rpsL31, xyl-5, mtl-1, argE3, thi-1, ara-14,  $\lambda^-$ ) transformed with pPR42. The strain P602 was a tolC mutant of AB1133 (tolC203) [8]. Cells were grown at 37°C in M9 medium supplemented with the necessary growth factors. Glucose (0.5%, w/v) was the carbon source.

Exponential stage cells (10 ml of  $A_{600} = 0.6$ ) were pelletted and resuspended in 1/10 vol. original medium. After 5 min pre-incubation at 25°C, L-[ $^{35}$ S]methionine was added to 50  $\mu$ Ci/ml. The pulse time was 10 s at 25°C, and samples were taken at various times after addition of cold L-methionine (0.2 M) to 20 mM. Each sample contained  $5 \times 10^8$  cells, and was added to crushed ice (~100  $\mu$ l) containing 0.2% (w/v) NaN<sub>3</sub>. Cells were pelletted in the Microfuge at 4°C and resuspended in SDS buffer (100 mM Tris, 5 mM EDTA, 0.5% (w/v) SDS, 0.02% NaN<sub>3</sub>, pH 7.4) (30  $\mu$ l), then boiled for 3 min.

#### 2.4. Immunoprecipitation of labeled proteins

To obtain antiserum to the TolC protein, purified protein [4] (0.75 mg) was suspended in Freund's complete adjuvant and injected into a rabbit. Booster shots (0.5 mg  $\times$  2) followed at 14-day intervals. Immunoprecipitation of labeled proteins was done according to Pittard (personal communication).

SDS-solubilised cells ( $2 \times 10^8$ ; section 2.3) were diluted 10-fold with Triton buffer [100 mM Tris, 1 mM EDTA, 0.02% (w/v) NaN<sub>3</sub>, 1% (w/v) Triton X-100 (pH 7.4)]. Antiserum (5  $\mu$ l) was added and the solution incubated at 37°C for 1 h. Affinity-purified goat-anti-rabbit IgG (20  $\mu$ l 4 mg/ml, donated by P. Ey) was added and, after 3 h at 37°C, the precipitate was collected by centrifugation (Microfuge, 15 s). The precipitate was washed twice with Triton buffer, and then twice with Tris buffer [100 mM Tris, 1 mM EDTA, 0.02% (w/v) NaN<sub>3</sub> (pH 7.4)] followed by suspension in buffer containing SDS and mercaptoethanol (30  $\mu$ l) [9] prior to gel analysis.

# 2.5. Polyacrylamide gel electrophoresis

Samples were boiled for 3 min and electrophoresis proceeded in 11% (w/v) polyacrylamide gels containing 0.2% (w/v) SDS [9]. The dried gels were autoradiographed, and the band intensities quantitated with a Helena Laboratories Scanner.

#### 3. RESULTS AND DISCUSSION

# 3.1. TolC protein antiserum precipitates a higher-Mr precursor of the TolC protein

Strain P2715 was labeled with L-[<sup>35</sup>S]methionine for 10 s and chased for various times. The SDS-solubilised cells were subjected to immunoprecipitation with antiserum to TolC protein followed by addition of goat-anti-rabbit IgG (sections 2.3 and 2.4). The immunoprecipitates were viewed on polyacrylamide gels (fig.1). At  $M_r$  50000-56000, two labeled bands appeared (fig.1).

Although the kinetics of processing may be complex, the overall effect seen in the chase was the decrease of the higher- $M_r$  band from 76% of total label at 15 s chase to 1% at 300 s of chase, while the lower- $M_r$  band rose from 24% of total label at 15 s to 99% of total label over the same period. This is evidence that the higher- $M_r$  band is a precursor of the lower- $M_r$  band.

As a control of the specificity of the TolC antiserum used, strain P602 (tolC) was examined in a pulse-chase experiment as above. No labeled bands could be detected on gels of im-

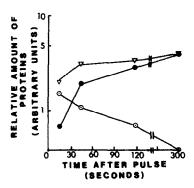



Fig. 1. Pulse-chase experiment to show that the TolC protein is initially made in a high- $M_{\rm r}$  form. Strain P2715 (carrying a high copy number  $tolC^+$  plasmid) was pulsed with L-[35S]methionine for 10 s and chased for varying times with cold L-methionine. Solubilised cells were immunoprecipitated with antiserum to TolC protein and goat-anti-rabbit IgG. The immunoprecipitates were solubilised, examined by PAGE, and subjected to autoradiography (upper). The gel region containing polypeptides of  $M_{\rm r}$  50000-56000 was scanned (lower); P, M, proposed precursor and mature TolC protein, respectively. The open vertical arrows indicate the peak corresponding to precursor TolC protein; (1) 15 s chase; (2) 45 s; (3) 120 s; (4) 300 s.

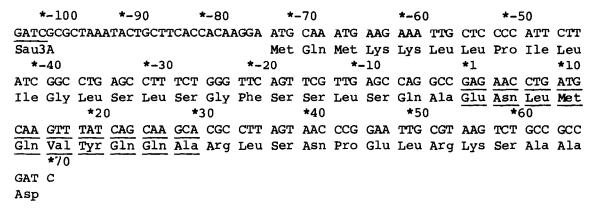



Fig. 2. The sequence of a 173 basepair Sau3A fragment containing the TolC protein N-terminus and the signal sequence. For cloning and sequencing details, see the text. The position 1 is the first G of the GAG (Glu) codon which is the first amino acid of the mature protein. The first 10 amino acids of the mature protein [4] are underlined.

munoprecipitates (not shown). The tolC mutation therefore results in the disappearance of both the higher- and lower- $M_r$  labeled bands of fig.1, in line with the idea that the higher- $M_r$  band is a precursor of the lower- $M_r$  band.

# 3.2. DNA sequencing of the N-terminal area of the tolC gene

As part of our preparation for sequencing the tolC gene, we isolated a 1.1 kilobasepair PstI fragment from pPR42 [3], which contained part of the tolC gene, as shown by transposon-insertion mutagenesis [3]. This fragment was cut with Sau3A, and the Sau3A fragments cloned in M13mp7. A 173 basepair Sau3A fragment contained a sequence corresponding to the 10 N-terminal amino acids of the mature protein [4] (fig.2). The TolC protein sequence reads from left to right in the map of pPR42 [3]; the first G of the GAG (Glu) codon which is the first amino acid of the mature protein lies 255 nucleotides to the left of the first C of the PstI cut in the tolC gene.

The GAG (Glu) codon which codes for the first amino acid of the mature protein is not preceded by a Met codon; such codons (ATG) occur 66 and 72 bases upstream from the GAG (fig.2). The AGGAA (-76 to -72) (fig.2) may be a Shine-Dalgarno sequence [13]; the GG of this sequence is separated from the ATG codons by 1 and 7 bases. Since the spacing between the Shine-Dalgarno GG and the first base of the initiation codon is typically 5-9 bases [14], this may indicate that the ATG at position -66 is actually the initiation codon.

This would give a signal sequence of 22 residues, of  $M_r$  2542.

The signal sequence described possesses features frequently observed in bacterial signal sequences [5]. A pair of basic amino acids (Lys-Lys) occurs near the N-terminus. There is a stretch of 8 hydrophobic residues (Leu-Leu-Pro-Ile-Leu-Ile-Gly-Leu) which contains a Pro residue. The amino acid next to the cleavage site (Ala) has a one-carbon side chain.

#### **ACKNOWLEDGEMENTS**

The assistance of Susanne Manning and Gary Penney is appreciated. J.H. was supported by the Australian Research Grants Committee and R.M. by a University of Adelaide scholarship. Our thanks also to David Eckerman of BRESA for the sequencing label and Peter Ey for purified antibody.

# **REFERENCES**

- [1] Morona, R. and Reeves, P. (1981) J. Bacteriol. 150, 1016-1023.
- [2] Davies, J. and Reeves, P. (1975) J. Bacteriol. 123, 96-101.
- [3] Morona, R. and Reeves, P. (1981) Mol. Gen. Genet. 184, 430-433.
- [4] Morona, R., Manning, P. and Reeves, P. (1983) J. Bacteriol., in press.
- [5] Michaelis, S. and Beckwith, J. (1982) Annu. Rev. Microbiol. 36, 435-465.

- [6] Sanger, F., Nicklen, S. and Coulson, A.R. (1977) Proc. Natl. Acad. Sci. USA 74, 5463-5467.
- [7] Messing, J., Crea, R. and Seeburg, P.H. (1981) Nucleic Acids Res. 9, 309-321.
- [8] Davies, J. and Reeves, P. (1975) J. Bacteriol. 123, 102-117.
- [9] Lugtenberg, B., Meijers, J., Peters, R., Van der Hoek, P. and Van Alphen, L. (1975) FEBS Lett. 58, 254-258.
- [10] Crowlesmith, I. and Gamon, K. (1982) Eur. J. Biochem. 124, 577-583.
- [11] Lin, J.J.C. and Wu, H.C. (1980) J. Biol. Chem. 255, 802-806.
- [12] Ito, K., Bassford, P.J. and Beckwith, J. (1981) Cell 24, 707-717.
- [13] Shine, J. and Dalgarno, L. (1974) Proc. Natl. Acad. Sci. USA 71, 1342-1346.
- [14] Gold, L., Pribnow, D., Schneider, T., Shinedling, S., Swebilius Singer, B. and Storno, G. (1981) Annu. Rev. Microbiol. 35, 365-403.